
Oracle Data Provider for .NET Entity

Framework Core 3
Developers Guide 19c (3.19.0-beta1) Beta 1

Pre-General Availability: May 2020

Introduction

Oracle Data Provider for .NET (ODP.NET) Entity Framework (EF) Core is a database provider that

supports Entity Framework Core applications for Oracle databases.

Entity Framework Core is a cross-platform Microsoft object-relational mapper that enables .NET

developers to work with relational databases using .NET objects.

ODP.NET EF Core consists of a single 100% managed code dynamic-link library,

Oracle.EntityFrameworkCore.dll, available via a NuGet package. It uses the Oracle.EntityFrameworkCore

namespace.

This ODP.NET EF Core beta supports the newest Entity Framework Core version 3.

This beta documentation supplements existing ODP.NET EF Core documentation. It covers the changes

made to EF Core since the last production release.

System Requirements

ODP.NET EF Core has similar system requirements as ODP.NET Core. ODP.NET EF Core requires the

following:

 Operating System

o Windows x64

 Windows 10 x64 (Pro, Enterprise, and Education Editions)

 Windows Server 2012 R2 x64 (Standard, Datacenter, Essentials, and Foundation

Editions)

 Windows Server 2016 x64 (Standard and Datacenter Editions)

 Windows Server 2019 x64 (Standard and Datacenter Editions)

o Linux x64

 Oracle Linux 7 and 8

 Red Hat Enterprise Linux 7 and 8

 .NET Core 2.1 and 3.1

o .NET 5 is not yet supported

 Entity Framework Core 3.1

o EF Core 5 is not yet supported

https://docs.oracle.com/en/database/oracle/oracle-data-access-components/19.3/odpnt/ODPEFCore.html

 Required .NET Assemblies

o ODP.NET Core 19.7 or higher

o Microsoft.EntityFrameworkCore.Relational

 Access to Oracle Database 11g Release 2 (11.2.0.4) or higher version

ODP.NET EF Core is compatible with ASP.NET Core and ASP.NET.

ODP.NET EF Core is built with AnyCPU. It supports 64-bit and 32-bit applications.

Application Programming Interfaces

ODP.NET EF Core supports standard EF Core application programming interfaces (APIs). The APIs below

are supported in addition to the APIs in the latest ODP.NET EF Core provider.

Note: These APIs are available in earlier ODP.NET EF Core versions.

DatabaseFacade.IsOracle

Returns true if ODP.NET is the currently used database provider.

Declaration

// C#

public static bool IsOracle()

Return Value

A bool

Remarks

The provider is only known after the provider is set in the DbContext. Only use this method after that.

DbContextOptionsBuilder.UseOracle

This extension method sets the provider and database connection configuration to connect to Oracle

Database. Developers can set any connection string attributes that are available in ODP.NET Core. Below

are the available method overloads that can be called.

 UseOracle(string connectionString)

 UseOracle(string connectionString, Action<OracleDbContextOptionsBuilder>

oracleOptionsAction = null)

 UseOracle(DbConnection connection, Action<OracleDbContextOptionsBuilder>

oracleOptionsAction = null)

 DbContextOptionsBuilder<TContext> UseOracle<TContext>(string connectionString,

Action<OracleDbContextOptionsBuilder> oracleOptionsAction = null)

 DbContextOptionsBuilder<TContext> UseOracle<TContext>(DbConnection

connection,Action<OracleDbContextOptionsBuilder> oracleOptionsAction = null)

Sample

// C#

optionsBuilder.UseOracle(@"User Id=blog;Password=<password>;Data Source=pdborcl;");

Scaffolding

Below is the ODP.NET EF Core behavior when the “–Schema” and/or “–Table” parameter is specified

while scaffolding a pre-existing model using the Package Manager Console command, Scaffold-

DbContext. Similar functionality is available using the EF Core tools command, dotnet ef dbcontext

scaffold.

 No Schema Filter Schema Filter

No Table Filter Generates all tables within
current user/schema

All tables generated in specified
schema

Table Filter Generates specified tables
within current user/schema

Specified tables generated in
specified schema

Note: If creating tables in another schema, the user must have at least SELECT privileges for that other

schema.

Limitations and Known Issues

Code First

 The HasIndex() fluent API cannot be invoked on an entity property that will result in a primary key in

the Oracle database. Oracle Database does not support the creation of indexes for primary keys,

since an index is implicitly created for all primary keys. [Bug 28624509, Bug 28610258]

 The 11.2 Oracle databases do not support default expression to reference any PL/SQL functions nor

any pseudocolumns such as '<sequence>.NEXTVAL'. As such, HasDefaultValue() and

HasDefaultValueSql() fluent APIs cannot be used in conjunction with 'sequence.NEXTVAL' as the

default value, for example, if the Oracle database is 11.2. However, the application can use the

UseOracleIdentityColumn() extension method to have the column be populated with server

generated values, even if the Oracle database is 11.2. Please read about UseOracleIdentityColumn()

for more details.

Scaffolding

 Scaffolding of a table that uses Function Based Indexes is now supported. However, the index
will NOT be scaffolded. [Bug 29782244]

LINQ

 Using String.IsNullOrEmpty or !String.IsNullOrEmpty within the WHERE clause of a LINQ query is
NOT supported. [Enh 29798071]

 Oracle Database 12.1 has the following limitation: if the select list contains columns with
identical names and you specify the row limiting clause, then an ORA-00918 error occurs. This
error occurs whether the identically named columns are in the same table or in different tables.

Let us suppose that database contains following two table definitions:

SQL> desc X;
 Name Null? Type
 ------- -------- ----------------------------
 COL1 NOT NULL NUMBER(10)
 COL2 NVARCHAR2(2000)

SQL> desc Y;
 Name Null? Type
 ------- -------- ----------------------------
 COL0 NOT NULL NUMBER(10)
 COL1 NUMBER(10)
 COL3 NVARCHAR2(2000)

Executing the following LINQ, for example, would generate a select query which would contain
"COL1" column from both the tables. Hence, it would result in error ORA-00918:

dbContext.Y.Include(a => a.X).Skip(2).Take(3).ToList();

This error does not occur when using Oracle Database 11.2, 12.2, and higher versions. [Bug
29199665]

 Certain LINQ queries cannot be executed against Oracle Database 11.2.

Let us first imagine an Entity Model with the following entities:

public class Gear
{
 public string FullName { get; set; }
 public virtual ICollection<Weapon> Weapons { get; set; }
}

public class Weapon
{
 public int Id { get; set; }
 public bool IsAutomatic { get; set; }
 public string OwnerFullName { get; set; }
 public Gear Owner { get; set; }
}

The following LINQ will not work against Oracle Database 11.2:

dbContext.Gear.Include(i => i.Weapons).OrderBy(o => o.Weapons.OrderBy(w =>
w.Id).FirstOrDefault().IsAutomatic).ToList();

This is due the LINQ query creating the following SQL query:

SELECT "i"."FullName"
FROM "Gear" "i"
ORDER BY (
 Select
 K0 "IsAutomatic" from(
 SELECT "w"."IsAutomatic" K0
 FROM "Weapon" "w"
 WHERE ("i"."FullName" = "w"."OwnerFullName")
 ORDER BY "w"."Id" NULLS FIRST
) "m1"
 where rownum <= 1
) NULLS FIRST, "i"."FullName" NULLS FIRST

Within the SELECT statement, there are two nested SELECTs. The generated SQL will encounter
a ORA-00904 : "invalid identifier" error with database 11.2 since it has a restriction where it
does not recognize outer select table alias "i" in the inner nested select query.
[Bug 29336890]

 LINQ query such as this is not supported with 11.2 database.

from c in ss.Set<Customer>()
from o in ss.Set<Order>().Where(o => c.CustomerID == o.CustomerID).Select(o => c.City)
select new { c, o }

This is because these LINQ queries result in CROSS APPLY to be used in the generated SQL query
which is not supported in 11.2 DB.

The generated SQL query is:

SELECT "c"."CustomerID", "c"."Address", "c"."City", "c"."CompanyName",
"c"."ContactName", "c"."ContactTitle", "c"."Country", "c"."Fax", "c"."Phone",
"c"."PostalCode", "c"."Region", "t"."City" "o"
FROM "Customers" "c"
CROSS APPLY (
 SELECT "c"."City", "o"."OrderID", "o"."CustomerID"
 FROM "Orders" "o"
 WHERE ("c"."CustomerID" = "o"."CustomerID")
) "t"
[Bug 31188818]

 LINQ query having GroupBy with Conditional Aggregate not supported.

Using Count() with predicate as highlighted below is NOT supported when used along with
GroupBy clause.

var query = (ss => ss.Set<Order>().GroupBy(o => o.CustomerID).Select(g =>
 g.Count(o => o.OrderID < 10300)));
var result = query.ToArray();
[Bug 31087576]

 A nested inner LINQ query referencing a column in a LINQ query two levels up is not supported.

Let us first imagine an Entity Model with the following entities:

public class Gear

{

 public Gear() { Weapons = new List<Weapon>(); }

 // composite key

 public string Nickname { get; set; }

 public int SquadId { get; set; }

 public string FullName { get; set; }

 public string CityOrBirthName { get; set; }

 public virtual City CityOfBirth { get; set; }

 public virtual City AssignedCity { get; set; }

 public MilitaryRank Rank { get; set; }

 public virtual CogTag Tag { get; set; }

 public virtual Squad Squad { get; set; }

 public virtual ICollection<Weapon> Weapons { get; set; }

 public string LeaderNickname { get; set; }

 public int LeaderSquadId { get; set; }

 public bool HasSoulPatch { get; set; }

 [NotMapped]

 public bool IsMarcus => Nickname == "Marcus";

}

public class Weapon

{

 // auto generated key (sequence)

 public int Id { get; set; }

 public string Name { get; set; }

 public AmmunitionType? AmmunitionType { get; set; }

 public bool IsAutomatic { get; set; }

 // 1 - 1 self reference

 public int? SynergyWithId { get; set; }

 public virtual Weapon SynergyWith { get; set; }

 public string OwnerFullName { get; set; }

 public Gear Owner { get; set; }

}

public class Officer : Gear

{

 public Officer() { Reports = new List<Gear>(); }

 // 1 - many self reference

 public virtual ICollection<Gear> Reports { get; set; }

}

Given the above entity classes, the following LINQ will not work against Oracle Database:

gs => from o in gs.OfType<Officer>()

select new

{
 o.FullName,
 OuterCollection = from r in o.Reports
 where r.FullName != "Foo"
 select new
 {
 r.FullName,
 InnerCollection = from w in r.Weapons where w.Name != "Bar"
 select new { w.Name, o.Nickname }
 }
 }

This is because the LINQ query creates the following SQL query:

SELECT "g"."FullName", "g"."Nickname", "g"."SquadId", "t0"."FullName", "t0"."Nickname",
"t0"."SquadId", "t0"."Name", "t0"."Nickname0", "t0"."Id"
FROM "Gears" "g"
OUTER APPLY (
 SELECT "g0"."FullName", "g0"."Nickname", "g0"."SquadId", "t"."Name", "t"."Nickname"
"Nickname0", "t"."Id"
 FROM "Gears" "g0"
 LEFT JOIN (
 SELECT "w"."Name", "g"."Nickname", "w"."Id", "w"."OwnerFullName"
 FROM "Weapons" "w"
 WHERE (("w"."Name" <> N'Bar') OR ("w"."Name" IS NULL))) "t" ON "g0"."FullName" =
"t"."OwnerFullName"
 WHERE (((("g0"."Discriminator" IN (N'Gear', N'Officer')) AND ("g0"."FullName" <> N'Foo')))
AND ((((("g"."Nickname" = "g0"."LeaderNickname") AND ("g0"."LeaderNickname" IS NOT
NULL))) AND ("g"."SquadId" = "g0"."LeaderSquadId"))))) "t0"

WHERE (("g"."Discriminator" IN (N'Gear', N'Officer')) AND ("g"."Discriminator" = N'Officer'))
ORDER BY "g"."Nickname" NULLS FIRST, "g"."SquadId" NULLS FIRST, "t0"."Nickname" NULLS
FIRST, "t0"."SquadId" NULLS FIRST, "t0"."Id" NULLS FIRST

The issue is because the SELECT query that is generated uses ‘OUTER APPLY’. There is an issue in
Oracle Database which causes it to return incorrect data when using ‘OUTER APPLY’. [Bug
31053669, Bug 30947031]

Migrations

 If more than one column is associated with any Sequence/Trigger, then ValueGeneratedOnAdd()
fluent API will be generated for each of these columns when performing a scaffolding operation.
If we then use this scaffolded model to perform a migration, then an issue occurs because each
of column that is associated with the ValueGeneratedOnAdd() fluent API is made an identity
column by default. To avoid this issue, use UseOracleSQLCompatibility("11") which will force it
to generate Triggers/Sequences instead. [Bug 29467919]

Sequences

 A sequence cannot be restarted.

 Extension methods related to SequenceHiLo is not supported, except for columns with Char, UInt,
ULong, and UByte data types.

Computed Columns

 Literal values used for computed columns must be encapsulated by two single-quotes. In the
example below, the literal string is the comma. It needs to be surrounded by two single-quotes as
shown below.

 // C# - computed columns code sample
 modelBuilder.Entity<Blog>()
 .Property(b => b.BlogOwner)
 .HasComputedColumnSql("\"LastName\" || '','' || \"FirstName\"");

Database Scalar Function Mapping

 Database scalar function mapping does not provide a native way to use
functions residing within PL/SQL packages. To workaround this limitation, map
the package and function to an Oracle synonym, then map the synonym to the EF
Core function. [Bug 29644406]

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.

This documentation is in pre-General Availability status and is intended for demonstration and

preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle

Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind

with respect to this documentation and will not be responsible for any loss, costs, or damages incurred

due to the use of this documentation.

This software and related documentation are provided under a license agreement containing

restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly

permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,

broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any

form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless

required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-

free. If you find any errors, please report them to us in writing.

This software or hardware is developed for general use in a variety of information management

applications. It is not developed or intended for use in any inherently dangerous applications, including

applications that may create a risk of personal injury. If you use this software or hardware in dangerous

applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and

other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any

damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be

trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks

are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,

Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of

Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,

products, and services from third parties. Oracle Corporation and its affiliates are not responsible for

and expressly disclaim all warranties of any kind with respect to third-party content, products, and

services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your

access to or use of third-party content, products, or services, except as set forth in an applicable

agreement between you and Oracle.

